
Part 2

Mining Patterns in Sequential Data

Sequential Pattern Mining: Definition

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

“Given a set of sequences, where each sequence consists of a list of
elements and each element consists of a set of items, and given a user-
specified min_support threshold, sequential pattern mining is to find all of
the frequent subsequences, i.e., the subsequences whose occurrence
frequency in the set of sequences is no less than min_support.”

~ [Agrawal & Srikant, 1995]1

“Given a set of data sequences, the problem is to discover sub-sequences
that are frequent, i.e., the percentage of data sequences containing them
exceeds a user-specified minimum support.”

~ [Garofalakis, 1999]

1 cited after Pei et al. 2001
2

Why Sequential Patterns?

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 3

Direct
Knowledge

Feature
Detection

Notation & Terminology

• Data:
– Dataset: set of sequences
– Sequence: an ordered list of itemsets (events) <e1 ,… ,en>
– Itemset: an (unordered) set of items ei = {ii1,…,iiz}

• Ssub = <s1, …, sn> is a subsequence of sequence Sref = <r1,…, rn> if:

 ∃ 𝑖1 <⋯< 𝑖𝑛: 𝑠𝑘 ⊆ 𝑟𝑖𝑘

Example:

• Length of a sequence: # items used in the sequence (not unique):
Example: length (<a,(b,c),a>) = 4

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

More Examples:

4

<a, (b,c), c>

<a, (d,e), (b,c), (a,c)>

is subsequence

More Examples:

Frequent Sequential Patterns

• Support sup(S) of a (sub-)sequence S in a dataset:
Number of sequences in the dataset that have S as a
subsequence

• Given a user chosen constant minSupport:
Sequence S is frequent in a dataset if sup (S) ≥ minSupport

• Task: Find all frequent sequences in the dataset

• If all sequences contain exactly one event:
Frequent itemset mining!

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

Examples:

5

Pattern Space
• General approach: enumerate candidates and count
• Problem: “combinatorial explosion”: Too many candidates
• Candidates for only 3 items:

• Candidates for 100 items:
– Length 1: 100;

– Length 2: 100 ∗ 100 ∗
100 ∗ 99

2
= 14,950

– Length 3: #𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑓𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖 = 2100 − 1 ≈ 1030100
𝑖

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

{}

a b c

<a,a> <a,b> <a,c> <b,a> <b,b> <b,c> <c,a> <c,b> <c,c> <(a,b)> <(a,c)> <(b,c)>

Length 1:
3 candidates

Length 2:
12 candidates

<a,a,a> <a,(ab)> <a,(ac)> <a,a,b)> <a,a,c> <a,(bc)> <a,b,a> <a,b,c> <a,c,b> <a,c,c> <b,(ab)> <b,(a,c)>

…

Length 3:
46 candidates

… … … … … …

6

Monotonicity and Pruning

• If S is a subsequence of R  then sup(S) is at most as large as sup(R)

• Monotonicity:
If S is not frequent, then it is impossible that R is frequent!
E.g. < a > occurs only 5 times, then <a, b> can occur at most 5 times

• Pruning:
If we know that S is not frequent, we do not have to evaluate any supersequence of S!

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web
…

Assume b is not
frequent

Length 2: only
5 candidates

Length 3: only
20 candidates left

7

{}

a b c

<a,a> <a,b> <a,c> <b,a> <b,b> <b,c> <c,a> <c,b> <c,c> <(a,b)> <(a,c)> <(b,c)>

<a,a,a> <a,(ab)> <a,(ac)> <a,a,b)> <a,a,c> <a,(bc)> <a,b,a> <a,b,c> <a,c,b> <a,c,c> <b,(ab)> <b,(a,c)>

… … … … … …

Apriori Algorithm (for Sequential Patterns)
• Evaluate pattern “levelwise” according to their length:

– Find frequent patterns with length 1
– Use these to find frequent patterns with length 2
– …

• First find frequent single items
• At each level do:

– Generate candidates from frequent patterns of the last level
• For each pair of candidate sequences (A, B):

– Remove first item of A and the last item of B
– If these are then equal:

generate a new candidate by adding the last item of b at the end of a

• E.g.: A = <a, (b,c), d>, B = <(b,c), (d,e)>  new candidate <a, (b,c), (d,e)>

– Prune the candidates (check if all subsequences are frequent)
– Check the remaining candidates by counting

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

More Examples:

8

[Agrawal & Srikant, 1995]

Extensions based on Apriori:

• Generalized Sequential Patterns (GSP): [Srikant & Agrawal 1996]

– Adds max/min gaps,

– Taxonomies for items,

– Efficiency improvements through hashing structures

• PSP: [Masseglia et al. 1998]

Organizes candidates in a prefix tree

• Maximal Sequential Patterns using Sampling (MSPS): Sampling
[Luo & Choung 2005]

• …

• See Mooney / Roddick for more details [Mooney & Roddick 2013]

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 9

SPaDE: Sequential Pattern Discovery using Equivalence Classes

• Uses a vertical data representation:

• ID-lists for longer candidates are constructed from shorter candidates

• Exploits equivalence classes:
 and <d> are equivalent  <b, x> and <d, x> have the same support

• Can traverse search space with depth-first or breadth-first search

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

SID Time Items

1 10 a, b, d

1 15 b, d

1 20 c

2 15 a

2 20 b, c, d

3 10 b, d

SID Time

1 10

2 15

a

SID Time

1 10

1 15

2 20

3 10

b

SID Time

1 20

2 20

c

SID Time

1 10

1 15

2 20

3 10

d

(Original) Horizontal database layout Vertical database layout

10

[Zaki 2001]

Extensions based on SPaDE

• SPAM: Bitset representation [Ayres et al. 2002]

• LAPIN: [Yang & et al. 2007]

Uses last position of items in sequence to reduce generated
candidates

• LAPIN-SPAM: combines both ideas [Yang & Kitsuregawa 2005]

• IBM: [Savary & Zeitouni 2005]

Combines several datastructures (bitsets, indices, additional tables)

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 11

PrefixSpan

• Similar idea to Frequent Pattern Growth in FIM

• Determine frequent single items (e.g., a, b, c, d, e):

– First mine all frequent sequences starting with prefix <a…>

– Then mine all frequent sequences starting with prefix <b…>

– …

• Mining all frequent sequences starting with <a…> does not require complete dataset!

• Build projected databases:

– Use only sequences containing a

– For each sequence containing a only use the part “after” a

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

Given Sequence Projection to a

< b, (c,d), a, (b d), e > <a, (b,d), e>

<c, (a,d), b, (d,e)> <(a,d), b, (d,e)>

<b, (de), c> [will be removed]

More Examples:

12

[Pei et al. 2001]

PrefixSpan (continued)

• Given prefix a and projected database for a: mine recursively!

– Mine frequent single items in projected database (e.g., b, c, d)

– Mine frequent sequences with prefix <a, b>

– Mine frequent sequences with prefix <a, c>

– …

– Mine frequent sequences with prefix <(a,b)>

– Mine frequent sequences with prefix <(a,c)>

– …

• Depth-First-Search

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

{}

a b c

<a,a> <a,b> <a,c> <b,a> <b,b> <b,c> <c,a> <c,b> <c,c> <(a,b)> <(a,c)> <(b,c)>

<a,a,a> <a,(ab)> <a,(ac)> <a,a,b)> <a,a,c> <a,(bc)> <a,b,a> <a,b,c> <a,c,b> <a,c,c> <b,(ab)> <b,(a,c)>

… … … … … …

13

Examples:

Advantages of PrefixSpan

• Advantages compared to Apriori:

No explicit candidate generation, no checking of not occuring
candidates

Projected databases keep shrinking

• Disadvantage:

Construction of projected database can be costly

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 14

So… which algorithm should you use?

• All algorithm give the same result

• Runtime / memory usage varies

• Current studies are inconclusive

• Depends on dataset characteristics:

– Dense data tends to favor SPaDE-like algorithms

– Sparse data tends to favor PrefixSpan and variations

• Depends on implementations

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 15

The Redundancy Problem

• The result set often contains many and many similar sequences

• Example: find frequent sequences with minSupport = 10

– Assume <a, (bc), d> is frequent

– Then the following sequence also MUST be frequent:

<a>, , <c>,
<a, b>, <a, c>, <a, d>, <b, d>, <c, d>, <(b,c)>,
<a, (b,c)>, <a, b, d>, <a, c, d>, <(b,c), d>

• Presenting all these as frequent subsequences
carries little additional information!

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 16

Closed and Maximal Patterns

• Idea: Do not use all patterns, but only…

– … frequent closed sequences:
all super-sequences have a smaller support

– … frequent maximal sequences :
All super-sequences are not frequent

• Example:

• Set of all frequent sequences can be derived from the maximal sequences

• Count of all frequent sequences can be derived from the closed sequences

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

Dataset

<a, b, c, d, e, f>

<a, c, d>

<c, b, a>

<b, a, (de)>

<b, a, c, d, e>

sup (<a,c>) = 3  frequent
sup (<a,c,d>) = 3  frequent, closed
sup (<a,c,d,e>) = 2  frequent, closed, max.
sup (<a,c,d,e,f>) = 1  not frequent

17

Try this example:

Mining Closed & Maximal Patterns

• In principle: can filter resulting frequent itemsets

• Specialized algorithms

– Apply pruning during the search process

– Much faster than mining all frequent sequences

• Some examples

– Closed:
• CloSpan: PrefixTree with additional pruning [Yan et al. 2003]

• BIDE: Memory-efficient forward/backward checking [Wang&Han 2007]

• ClaSP: Based on SPaDE [Gomariz et al. 2013]

– Maximal:
• AprioriAdjust: Based on Apriori [Lu & Li 2004]

• VMSP: Based on vertical data structures [Fournier-Viger et al. 2014]

• MaxSP: Inpired by PrefixSpan,
 maximal backward and forward extensions [Fournier-Viger et al. 2013]

• MSPX: approximate algorithm using samples [Luo & Chung 2005]

 P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 18

Beyond Frequency

• Frequent sequence ≠ interesting sequence

• Example for text sequences:
Most frequent sequences in “Adventures from Tom Sawyer”1:

• Two options:

– Add constraints (filter)

– Use interestingness measures

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web

Sequence Support (in %)

<and, and> 13%

<and, to> 9.8%

<to, and 9.1%

<of, and> 8.6%

1 According to [Petitjean et al. 2015] 19

Constraints

• Item constraints: e.g., high-utility items: Sum all items in the sequence >
1000$

• Length constraint: Minimum/maximum number of events/transactions

• Model-based constraints: Sub-/supersequences of a given sequence

• Gap constraints: Maximum gap between events of a sequence

• Time constraints: Given timestamps, maximum time between events of a sequence

• Closed or maximal sequences only

• …

• Computation:

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 20

1. Mine all frequent patterns
2. Filter

“Push constraints
into the algorithm”

Interestingness Measures and top-k Search

• Use interestingness measures

– Function that assign a numeric value (score) to each sequence

– Should reflect the “assumed interestingness” for users

– Desired properties:
conciseness, generality, reliability, diversity,
novelty, surprisingness, applicability

• New goal: search for the k sequences that achieve the highest score

• Interestingness measure also implies a ranking of the result

• Simple mining approach:

1. Compute all frequent patterns

2. Compute the score of each pattern

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 21

Confidence

• Typical measure for association rule mining

• Can easily be adapted for sequential pattern

• Split sequence into a rule (e.g., with the last event as rule head)

• Confidence = accuracy of this rule

• Can be used as a constraint or as an interestingness measure

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 22

A B C D

Support = 20

Support = 30

Confidence (< A, B, D >  F) =
20

30

Leverage

• Compare support of a sequence with “expected support”:
𝑆𝑐𝑜𝑟𝑒 𝑆 = sup 𝑆 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆)

• Idea of expected support?

• Formalization for 2-sequences:

expectedSupport (< a, b >=
sup (< 𝑎, 𝑏 > + sup < 𝑏, 𝑎 >

2

• Formalization for larger sequences generalizes this
P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 23

frequent

If:

frequent

AND

Then:

Is also more likely to be frequent then the average 4-sequence
It should be reported only, if ist frequency exceeds expectation

[Petitjean et al. 2015]

Other Interestingness Measures

• Information theoretic approaches: [Tatti & Vreeken 2012], [Lam et al. 2014]

– Use minimum description length

– Find sequence (sets) that best explain/compress the dataset

• Model-based approaches [Gwadera & Crestani 2010], [Lam et al. 2014]

– Build a reference model (e.g., learn a markov chain model)

– Determine which sequences are most unlikely given that model

– (Compute statistical significance)

• Include time information

• …

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 24

Efficient top-k Sequential Pattern Mining

• Example Algorithm SkOPUS:

• Depth First Search

• Pruning:

– Interestingness measures like leverage/confidence are not directly
monotone (unlike support)
E.g.: score (<a, b, c>) can be higher then score (<a, b>)

– Use upper bounds (“optimistic estimates”) oe(S)
For each sequence S this is threshold,
such that no super-sequence of S has a higher score

– Has to be determined for each interestingness measure separately

– Often easy to compute for a single interestingness measure

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 25

[Petitjean et al. 2015]

Case Study Web Log Mining

• Portuguese web portal for business executives:

• Data: 3,000 users; 70,000 session; 1.7M accesses

• Navigation patterns found on page level:

– Too many

– Not very useful

• On type level (“news”, “navigation”)

– More interesting findings

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 26

[Soares et al. 2006]

 Mining Web logs to Improve Website Organization

• Given link structure of a web page, visitor log

• Build sequences for each visitor

• Define target page

• Find frequent paths to the target page

• Identify links that could shorten user paths

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 27

[Srikant & Yang 2001]

Available Software Libraries

• Java:
– SPMF (most extensive library)

http://www.philippe-fournier-viger.com/spmf/

– Basic support in RapidMiner, KNIME

• R

– arulesSequences package

– TraMiner package

• Python

– Multiple basic implementations

– The implementations for this tutorial (mainly educational, not efficient)

• Spark: PrefixSpan available

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 28

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

What we did not talk about…

• Episode mining

– Given long sequences: find recurring patterns

– Mining: candidate generation vs. pattern growth

• Discriminative sequential pattern

• Incremental mining / data streams

• Pattern in time-series

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 29

[Mannila et al. 1997]

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 30

Q U E S T I O N ? S

References (1/2)
• Agrawal, R., & Srikant, R. (1995, March). Mining sequential patterns. In Data Engineering, 1995. Proceedings of the Eleventh

International Conference on (pp. 3-14). IEEE.

• Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002, July). Sequential pattern mining using a bitmap representation. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 429-435). ACM.

• Fournier-Viger, P., Wu, C. W., Gomariz, A., & Tseng, V. S. (2014). VMSP: Efficient vertical mining of maximal sequential patterns.
In Advances in Artificial Intelligence (pp. 83-94). Springer International Publishing.

• Fournier-Viger, P., Wu, C. W., & Tseng, V. S. (2013). Mining maximal sequential patterns without candidate maintenance. In
Advanced Data Mining and Applications (pp. 169-180). Springer Berlin Heidelberg.

• Garofalakis, M. N., Rastogi, R., & Shim, K. (1999, September). SPIRIT: Sequential pattern mining with regular expression constraints.
In VLDB (Vol. 99, pp. 7-10).

• Gomariz, A., Campos, M., Marin, R., & Goethals, B. (2013). Clasp: An efficient algorithm for mining frequent closed sequences.
In Advances in knowledge discovery and data mining (pp. 50-61). Springer Berlin Heidelberg.

• Gwadera, R., & Crestani, F. (2010). Ranking sequential patterns with respect to significance. In Advances in Knowledge Discovery
and Data Mining (pp. 286-299). Springer Berlin Heidelberg.

• Lam, H. T., Mörchen, F., Fradkin, D., & Calders, T. (2014). Mining compressing sequential patterns. Statistical Analysis and Data
Mining, 7(1), 34-52.

• Luo, C., & Chung, S. M. (2005, April). Efficient Mining of Maximal Sequential Patterns Using Multiple Samples. In SDM (pp. 415-
426).

• Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in event sequences. Data mining and knowledge
discovery, 1(3), 259-289.

• Masseglia, F., Cathala, F., & Poncelet, P. (1998). The PSP approach for mining sequential patterns. In Principles of Data Mining and
Knowledge Discovery (pp. 176-184). Springer Berlin Heidelberg.

• Mooney, C. H., & Roddick, J. F. (2013). Sequential pattern mining--approaches and algorithms. ACM Computing Surveys (CSUR),
45(2), 19.

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 31

Icons in this slide set are CC0 Public Domain, taken from pixabay.com

References (2/2)
• Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. C. (2001, April). Prefixspan: Mining sequential patterns

efficiently by prefix-projected pattern growth. In icccn (p. 0215). IEEE.

• Soares, C., de Graaf, E., Kok, J. N., & Kosters, W. A. (2006). Sequence mining on web access logs: A case study. In
Belgian/Netherlands Artificial Intelligence Conference, Namur.

• Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements (pp. 1-17). Springer
Berlin Heidelberg.

• Srikant, R., & Yang, Y. (2001, April). Mining web logs to improve website organization. In Proceedings of the 10th international
conference on World Wide Web (pp. 430-437). ACM.

• Tatti, N., & Vreeken, J. (2012, August). The long and the short of it: summarising event sequences with serial episodes.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 462-470). ACM.

• Wang, J., Han, J., & Li, C. (2007). Frequent closed sequence mining without candidate maintenance. Knowledge and Data
Engineering, IEEE Transactions on, 19(8), 1042-1056.

• Yan, X., Han, J., & Afshar, R. (2003, May). CloSpan: Mining closed sequential patterns in large datasets. In In SDM (pp. 166-177).

• Yang, Z., Wang, Y., & Kitsuregawa, M. (2007). LAPIN: effective sequential pattern mining algorithms by last position induction for
dense databases. In Advances in Databases: Concepts, Systems and Applications (pp. 1020-1023). Springer Berlin Heidelberg.

• Yang, Z., & Kitsuregawa, M. (2005, April). LAPIN-SPAM: An improved algorithm for mining sequential pattern. In Data Engineering
Workshops, 2005. 21st International Conference on (pp. 1222-1222). IEEE.

• Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine learning, 42(1-2), 31-60.

P. Singer, F. Lemmerich: Analyzing Sequential User Behavior on the Web 32

Icons in this slide set are CC0 Public Domain, taken from pixabay.com

