
Part 2 
 

Mining Patterns in Sequential Data 
 



Sequential Pattern Mining: Definition 
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“Given a set of sequences, where each sequence consists of a list of 
elements and each element consists of a set of items, and given a user-
specified min_support threshold, sequential pattern mining is to find all of 
the frequent subsequences, i.e., the subsequences whose occurrence 
frequency in the set of sequences is no less than min_support.” 
 

~ [Agrawal & Srikant, 1995]1 
  

“Given a set of data sequences, the problem is to discover sub-sequences 
that are frequent, i.e., the percentage of data sequences containing them 
exceeds a user-specified minimum support.” 

~ [Garofalakis, 1999] 

  

1 cited after Pei et al. 2001 
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Why Sequential Patterns? 
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Direct 
Knowledge 

Feature 
Detection 



Notation & Terminology 

• Data: 
– Dataset: set of sequences 
– Sequence: an ordered list of itemsets (events) <e1 ,… ,en> 
– Itemset: an (unordered) set of items ei = {ii1,…,iiz} 

 

• Ssub = <s1, …, sn> is a subsequence of sequence Sref = <r1,…, rn> if:   
    

    ∃ 𝑖1 <⋯< 𝑖𝑛: 𝑠𝑘 ⊆ 𝑟𝑖𝑘   
 

Example: 

 

 

• Length of a sequence: # items used in the sequence (not unique): 
Example: length (<a,(b,c),a>) = 4 
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More Examples: 
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<a, (b,c), c> 

<a, (d,e), (b,c), (a,c)> 

is subsequence 

More Examples: 



Frequent Sequential Patterns 

• Support sup(S) of a (sub-)sequence  S in a dataset:  
Number of sequences in the dataset that have S as a 
subsequence  
 

• Given a user chosen constant minSupport: 
Sequence S is frequent in a dataset if sup (S) ≥ minSupport 
 

• Task: Find all frequent sequences in the dataset 

 

• If all sequences contain exactly one event: 
Frequent itemset mining! 
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Examples: 
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Pattern Space 
• General approach: enumerate candidates and count 
• Problem: “combinatorial explosion”: Too many candidates 
• Candidates for only 3 items: 

 
 
 
 
 
 
 
 
 
 
 

• Candidates for 100 items: 
– Length 1: 100;  

– Length 2: 100 ∗ 100 ∗  
100 ∗ 99

2
= 14,950  

– Length 3:  #𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠  𝑓𝑜𝑟  𝑙𝑒𝑛𝑔𝑡ℎ  𝑖 = 2100 − 1 ≈ 1030100
𝑖  
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{} 

a b c 

<a,a> <a,b> <a,c> <b,a> <b,b> <b,c> <c,a> <c,b> <c,c> <(a,b)> <(a,c)> <(b,c)> 

Length 1: 
3 candidates 

Length 2: 
12 candidates 

<a,a,a> <a,(ab)> <a,(ac)> <a,a,b)> <a,a,c> <a,(bc)> <a,b,a> <a,b,c> <a,c,b> <a,c,c> <b,(ab)> <b,(a,c)> 

… 

Length 3: 
46 candidates 

… … … … … … 
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Monotonicity and Pruning 

• If S is a subsequence of R  then sup(S) is at most as large as sup(R) 

• Monotonicity: 
If S is not frequent, then it is impossible that R is frequent! 
E.g. < a > occurs only 5 times, then <a, b> can occur at most 5 times 

• Pruning: 
If we know that S is not frequent, we do not have to evaluate any supersequence of S! 
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… 

Assume b is not 
frequent 

Length 2: only 
5 candidates 

Length 3: only  
20 candidates left 
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{} 

a b c 

<a,a> <a,b> <a,c> <b,a> <b,b> <b,c> <c,a> <c,b> <c,c> <(a,b)> <(a,c)> <(b,c)> 

<a,a,a> <a,(ab)> <a,(ac)> <a,a,b)> <a,a,c> <a,(bc)> <a,b,a> <a,b,c> <a,c,b> <a,c,c> <b,(ab)> <b,(a,c)> 

… … … … … … 



Apriori Algorithm (for Sequential Patterns) 
• Evaluate pattern “levelwise” according to their length: 

– Find frequent patterns with length 1 
– Use these to find frequent patterns with length 2 
– … 

 
• First find frequent single items 
• At each level do: 

– Generate candidates from frequent patterns of the last level 
• For each pair of candidate sequences (A, B): 

– Remove first item of A and the last item of B 
– If these are then equal: 

generate a new candidate by adding the last item of b at the end of a 

• E.g.: A = <a, (b,c), d>, B = <(b,c), (d,e)>  new candidate <a, (b,c), (d,e)> 
 

 
– Prune the candidates (check if all subsequences are frequent) 
– Check the remaining candidates by counting 
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More Examples: 
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[Agrawal & Srikant, 1995] 



Extensions based on Apriori: 

• Generalized Sequential Patterns (GSP): [Srikant & Agrawal 1996] 

– Adds max/min gaps,  

– Taxonomies for items,  

– Efficiency improvements through hashing structures 

 

• PSP: [Masseglia et al. 1998] 

Organizes candidates in a prefix tree 

 

• Maximal Sequential Patterns using Sampling (MSPS): Sampling 
[Luo & Choung 2005] 

• … 

• See Mooney / Roddick for more details [Mooney & Roddick 2013] 
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SPaDE: Sequential Pattern Discovery using Equivalence Classes 

• Uses a vertical data representation: 

 

 

 

 

 

 

 

 

 

• ID-lists for longer candidates are constructed from shorter candidates 

• Exploits equivalence classes: 
<b> and <d> are equivalent  <b, x> and <d, x> have the same support 

• Can traverse search space with depth-first or breadth-first search 
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SID Time Items 

1 10 a, b, d 

1 15 b, d 

1 20 c 

2 15 a 

2 20 b, c, d 

3 10 b, d 

SID Time 

1 10 

2 15 

a 

SID Time 

1 10 

1 15 

2 20 

3 10 

b 

SID Time 

1 20 

2 20 

c 

SID Time 

1 10 

1 15 

2 20 

3 10 

d 

(Original) Horizontal database layout Vertical database layout 
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[Zaki 2001] 



Extensions based on SPaDE 

• SPAM: Bitset representation [Ayres et al. 2002] 

 

• LAPIN: [Yang & et al. 2007] 

Uses last position of items in sequence to reduce generated 
candidates 

 

• LAPIN-SPAM: combines both ideas [Yang & Kitsuregawa 2005] 

 

• IBM: [Savary & Zeitouni 2005] 

Combines several datastructures (bitsets, indices, additional tables) 
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PrefixSpan 

• Similar idea to Frequent Pattern Growth in FIM 

• Determine frequent single items (e.g., a, b, c, d, e): 

– First mine all frequent sequences starting with prefix <a…> 

– Then mine all frequent sequences starting with prefix <b…> 

– … 

• Mining all frequent sequences starting with <a…> does not require complete dataset! 

• Build projected databases: 

– Use only sequences containing a 

– For each sequence containing a only use the part “after” a 
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Given Sequence Projection to a 

< b, (c,d), a, (b d), e > <a, (b,d), e> 

<c, (a,d), b, (d,e)> <(a,d), b, (d,e)> 

<b, (de), c> [will be  removed] 

More Examples: 
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[Pei et al. 2001] 



PrefixSpan (continued) 

• Given prefix a and projected database for a: mine recursively! 

– Mine frequent single items in projected database (e.g., b, c, d) 

– Mine frequent sequences with prefix <a, b> 

– Mine frequent sequences with prefix <a, c> 

– … 

– Mine frequent sequences with prefix <(a,b)> 

– Mine frequent sequences with prefix <(a,c)> 

– … 

• Depth-First-Search 
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{} 

a b c 

<a,a> <a,b> <a,c> <b,a> <b,b> <b,c> <c,a> <c,b> <c,c> <(a,b)> <(a,c)> <(b,c)> 

<a,a,a> <a,(ab)> <a,(ac)> <a,a,b)> <a,a,c> <a,(bc)> <a,b,a> <a,b,c> <a,c,b> <a,c,c> <b,(ab)> <b,(a,c)> 

… … … … … … 
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Examples: 



Advantages of PrefixSpan 

• Advantages compared to Apriori: 

No explicit candidate generation, no checking of not occuring 
candidates 

Projected databases keep shrinking 

 

 

• Disadvantage: 

Construction of projected database can be costly 
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So… which algorithm should you use? 

• All algorithm give the same result 

• Runtime / memory usage varies 

 

• Current studies are inconclusive 

• Depends on dataset characteristics: 

– Dense data tends to favor SPaDE-like algorithms 

– Sparse data tends to favor PrefixSpan and variations 

 

• Depends on implementations 
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The Redundancy Problem 

• The result set often contains many and many similar sequences 

• Example: find frequent sequences with minSupport = 10 

– Assume <a, (bc), d> is frequent  

– Then the following sequence also MUST be frequent: 

<a>, <b>, <c>,  
<a, b>, <a, c>, <a, d>, <b, d>, <c, d>, <(b,c)>, 
<a, (b,c)>, <a, b, d>, <a, c, d>, <(b,c), d> 

 

• Presenting all these as frequent subsequences 
carries little additional information! 
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Closed and Maximal Patterns 

• Idea: Do not use all patterns, but only… 

– … frequent closed sequences:  
all super-sequences have a smaller support 

– … frequent maximal sequences :  
All super-sequences are not frequent 

 

• Example: 

 

 

 

 

 

• Set of all frequent sequences can be derived from the maximal sequences 

• Count of all frequent sequences can be derived from the closed sequences 
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Dataset 

<a, b, c, d, e, f> 

<a, c, d> 

<c, b, a> 

<b, a, (de)> 

<b, a, c, d, e> 

sup (<a,c>) = 3  frequent 
sup (<a,c,d>) = 3  frequent, closed 
sup (<a,c,d,e>) = 2  frequent, closed, max. 
sup (<a,c,d,e,f>) = 1  not frequent 
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Try this example: 



Mining Closed & Maximal Patterns 

• In principle: can filter resulting frequent itemsets 

• Specialized algorithms 

– Apply pruning during the search process  

– Much faster than mining all frequent sequences 

• Some examples 

– Closed: 
• CloSpan: PrefixTree with additional pruning [Yan et al. 2003] 

• BIDE: Memory-efficient forward/backward checking [Wang&Han 2007] 

• ClaSP: Based on SPaDE [Gomariz et al. 2013] 

– Maximal: 
• AprioriAdjust: Based on Apriori [Lu & Li 2004] 

• VMSP: Based on vertical data structures [Fournier-Viger et al. 2014] 

• MaxSP: Inpired by PrefixSpan,  
  maximal backward and forward extensions [Fournier-Viger et al. 2013] 

• MSPX: approximate algorithm using samples [Luo & Chung 2005] 
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Beyond Frequency 

• Frequent sequence ≠ interesting sequence 

• Example for text sequences:  
Most frequent sequences in “Adventures from Tom Sawyer”1: 

 

 

 

 

 

 

 

• Two options: 

– Add constraints (filter) 

– Use interestingness measures 
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Sequence Support (in %) 

<and, and> 13% 

<and, to> 9.8% 

<to, and 9.1% 

<of, and> 8.6% 

1 According to [Petitjean et al. 2015] 19 



Constraints 

• Item constraints: e.g., high-utility items: Sum all items in the sequence > 
1000$ 

• Length constraint: Minimum/maximum number of events/transactions 

• Model-based constraints: Sub-/supersequences of a given sequence 

• Gap constraints: Maximum gap between events of a sequence 

• Time constraints: Given timestamps, maximum time between events of a sequence 

• Closed or maximal sequences only 

• … 

• Computation: 
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1. Mine all frequent patterns 
2. Filter 

“Push constraints  
into the algorithm” 



Interestingness Measures and top-k Search 

• Use interestingness measures  

– Function that assign a numeric value (score) to each sequence 

– Should reflect the “assumed interestingness” for users 

– Desired properties: 
conciseness, generality, reliability, diversity,  
novelty, surprisingness, applicability 

 

• New goal: search for the k sequences that achieve the highest score 

 

• Interestingness measure also implies a ranking of the result 

 

• Simple mining approach: 

1. Compute all frequent patterns 

2. Compute the score of each pattern 
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Confidence 

• Typical measure for association rule mining 

• Can easily be adapted for sequential pattern 

• Split sequence into a rule (e.g., with the last event as rule head) 

• Confidence = accuracy of this rule 

 

 

 

 

 

 

• Can be used as a constraint or as an interestingness measure 
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A B C D 

Support = 20  

Support = 30  

Confidence (< A, B, D >  F) = 
20

30
 



Leverage 

• Compare support of a sequence with “expected support”: 
𝑆𝑐𝑜𝑟𝑒 𝑆 = sup 𝑆 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆) 

• Idea of expected support? 
 
 

 

 

 

 

• Formalization for 2-sequences: 

expectedSupport (< a, b >=  
sup (< 𝑎,  𝑏 > + sup < 𝑏,  𝑎 >

2
 

• Formalization for larger sequences generalizes this 
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frequent 

If: 

frequent 

AND 

Then: 

Is also more likely to be frequent then the average 4-sequence 
It should be reported only, if ist frequency exceeds expectation 

[Petitjean et al. 2015] 



Other Interestingness Measures 

• Information theoretic approaches: [Tatti & Vreeken 2012],  [Lam et al. 2014] 

– Use minimum description length 

– Find sequence (sets) that best explain/compress the dataset 

 

• Model-based approaches [Gwadera & Crestani 2010],  [Lam et al. 2014]   

– Build a reference model (e.g., learn a markov chain model) 

– Determine which sequences are most unlikely given that model 

– (Compute statistical significance) 

 

• Include time information 

• … 
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Efficient top-k Sequential Pattern Mining 

• Example Algorithm SkOPUS: 

 

• Depth First Search 

• Pruning:  

– Interestingness measures like leverage/confidence are not directly 
monotone (unlike support) 
E.g.: score ( <a, b, c> ) can be higher then score ( <a, b> ) 

– Use upper bounds (“optimistic estimates”) oe(S) 
For each sequence S this is threshold,  
such that no super-sequence of S has a higher score 

– Has to be determined for each interestingness measure separately 

– Often easy to compute for a single interestingness measure 
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[Petitjean et al. 2015] 



Case Study Web Log Mining 

• Portuguese web portal for business executives:  

• Data: 3,000 users; 70,000 session; 1.7M accesses 

 

• Navigation patterns found on page level: 

– Too many 

– Not very useful 

 

• On type level (“news”, “navigation”) 

– More interesting findings 
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[Soares et al. 2006] 



 Mining Web logs to Improve Website Organization 

• Given link structure of a web page, visitor log 

• Build sequences for each visitor 

• Define target page 

 

• Find frequent paths to the target page 

• Identify links that could shorten user paths 
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[Srikant & Yang 2001] 



Available Software Libraries 

• Java: 
– SPMF (most extensive library) 

http://www.philippe-fournier-viger.com/spmf/ 

– Basic support in RapidMiner, KNIME 

 

• R 

– arulesSequences package 

– TraMiner package 

 

• Python 

– Multiple basic implementations 

– The implementations for this tutorial (mainly educational, not efficient) 

 

• Spark: PrefixSpan available 
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What we did not talk about… 

• Episode mining 

– Given long sequences: find recurring patterns 

– Mining: candidate generation vs. pattern growth 

 

• Discriminative sequential pattern 

 

• Incremental mining / data streams 

 

• Pattern in time-series 
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[Mannila et al. 1997] 
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Q U E S T I O N ? S 
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